References

Assaraf, R, and Caffarel, M. Zero-Variance Principle for Monte Carlo Algorithms, Phys Rev Lett 83(23):4682–5 (1999)
Chatterjee, K., Roadcap, J. R. and Singh, S. A new Green’s function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson-Boltzmann equation. J. Comput. Phys. 276, 479-485 (2014)
Clough, S.A.et al. (1989) Line shape and the water vapor continuum. Atmospheric Research 23, 229-241
Curtiss, J. H. Monte Carlo Methods for the Iteration of Linear Operators. J. Math. Phys. 32, 209-232 (1953).
Dauchet, J. (2012), Analyse radiative des photobioréacteurs, PhD thesis, Univ. Clermont Ferrand
Dauchet, J., Blanco, S., Cornet, J.-F., Hafi, M. E., Eymet, V., and Fournier, R. (2013) The practice of recent radiative transfer Monte Carlo advances and its contribution to the field of microorganisms cultivation in photobioreactors. J. Quant. Spectrosc. Radiat. Transfer 128, 52-59
Dauchet, J., Bezian, J.-J., Blanco, S., Caliot, C., Charon, J., Coustet, C., El-Hafi, M., Eymet, V., Farges, O., Forest, V., Fournier, R., Galtier, M., Gautrais, J., Khuong, A., Pelissier, L., Piaud, B., Roger, M., Terrée, G., and Weitz, S (2016).
Dufresne J.-L., R. Fournier, C. Hourdin, and F. Hourdin (2005) Net exchange reformulation of radiative transfer in the CO2 15-um band on Mars. J. Atmos. Sci., 62 :3303-3319 Monte carlo and nonlinearities. https://arxiv.org/abs/1610.02684
El Hafi, M., Blanco, S., Dauchet, J., Galtier, M., Fournier, R., Tregan, J.M. and Villefranque, N (2018) Three viewpoints on null collision Monte Carlo algorithms, In Eurotherm Seminar 110 – VI April 11-13, Cascais, Portugal
Eymet, V., Fournier, R., Dufresne, J.-L. et al. (2009) Net-Exchange parameterization of infrared radiative transfers in Venus’ atmosphere, JGR Planets, 114, E11008, doi:10.1029/2008JE003276
Eymet, V. et al. 2013: Null-collision meshless Monte-Carlo. Application to the validation of fast radiative transfer solvers embedded in combustion simulators. JQSRT 129, 145-157, https://doi.org/10.1016/j.jqsrt.2013.06.004
Galtier, M., Blanco, S., Caliot, C., Coustet, C., Dauchet, J., El Hafi, M., Eymet, V., Fournier, et al.(2013) Integral formulation of null-collision Monte Carlo algorithms. J. Quant. Spectrosc. Radiat. Transfer, 125, 57–68
Galtier, M. et al. 2016: Radiative transfer and spectroscopic databases: a line-sampling Monte-Carlo approach. J. Quant. Spectrosc. Radiat. Transfer, 83-97, https://doi.org/10.1016/j.jqsrt.2015.10.016
Jakob W. and S. Marschner (2012) Manifold exploration: A markov chain monte carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph., 31(4):58:1–58:13.
Kalos, M.H. & Whitlock, P.A. Monte Carlo Methods, second ed. (Wiley-VCH, Weinheim 2008).
Kutz, P. et al. 2017: Spectral and decomposition tracking for rendering heterogeneous volumes. ACM Trans. Graph. 36, 111:1-111:16, http://doi.acm.org/10.1145/3072959.3073665
Lataillade, A., S. Blanco, Y. Clergent, J.L. Dufresne, M. El Hafi and R. Fournier (2002) Monte Carlo methods and sensitivity estimations. J. Quant. Spectrosc. Radiat. Transfer, Vol. 75, N.5, pp.529-538
Meinshausen M. et al. (2017) Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, doi:10.5194/gmd-10-2057-2017
Mellado N., D. Aiger, and N. J. Mitra (2014). Super 4pcs fast global pointcloud registration via smart indexing. Comput. Graph. Forum, 33(5):205–215.
Mellado N., M. Dellepiane, and R. Scopigno (2016) Relative scale estimation and 3d registration of multi-modal geometry using growing least squares. IEEE Transactions on Visualization and Computer Graphics, 22(9):2160–2173
Myhre G et al. (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25(14), p. 2715-2718
Myhre G. et al. (2013) Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Fifth Assessment Report of the Intergovernmental Panel on Climate Change
Novák et al. 2014: Residual ratio tracking for estimating attenuation in participating media. ACM Trans. Graph. 33, 179:1-179:11, https://doi.org/10.1145/2661229.2661292
Pajot A., L. Barthe, M. Paulin, and P. Poulin (2011). Representativity for robust and adaptive multiple importance sampling. IEEE Transactions on Visualization and Computer Graphics, 17(8):1108–1121.
Pajot A., L. Barthe, and M. Paulin (2014) Globally adaptive control variate for robust numerical integration. SIAM Journal on Scientific Computing, 36(4):A1708–A1730
Pincus, R., H. W. Barker, and J.-J. Morcrette (2003) A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields, J. Geophys. Res., 108(D13), 4376, doi:10.1029/2002JD003322
Roger M, S Blanco, M El Hafi, R Fournier (2005) Monte Carlo estimates of domain-deformation sensitivities. Phys. Rev. Lett. 95(18), pp. 180601, https://doi.org/10.1103/PhysRevLett.95.180601
Szczap F. et al. (2014) A flexible three-dimensional stratocumulus, cumulus and cirrus cloud generator (3DCLOUD), Geosci. Model Dev., 7, 1779-1801 https://doi.org/10.5194/gmd-7-1779-2014
Szirmay-Kalos L. et al. 2017: Unbiased Estimators to Render Procedurally Generated Inhomogeneous Participating Media. Computer Graphics Forum 36 (2) https://doi.org/10.1111/cgf.13102
Veach E. and L. J. Guibas (1995). Optimally combining sampling techniques for Monte Carlo rendering. In Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pages 419–428